The Effect of Light Intensity on the Expression of Leucoanthocyanidin Reductase in Grapevine Calluses and Analysis of Its Promoter Activity.

2020 
To investigate the effect of light intensity on flavonoid biosynthesis, grapevine calluses were subjected to high light (HL, 250 μmol m−2 s−1) and dark (0 μmol m−2 s−1) in comparison to 125 μmol m−2 s−1 under controlled conditions (NL). The alteration of flavonoid profiles was determined and was integrated with RNA sequencing (RNA-seq)-based transcriptional changes of the flavonoid pathway genes. Results revealed that dark conditions inhibited flavonoid biosynthesis. Increasing light intensity affected flavonoids differently—the concentrations of flavonols and anthocyanins as well as the expressions of corresponding genes were less affected, whereas flavan-3-ol concentrations were predominantly increased, which caused enhanced trans-flavan-3-ol concentrations. Moreover, genes encoding leucoanthocyanidin reductase (LAR) exhibited different response patterns to light intensity changes—VviLAR1 expression increased with an increased light intensity, whereas VviLAR2 expression was insensitive. We further confirmed that the known transcription factors (TFs) involved in regulating flavan-3-ol biosynthesis utilized VviLAR1 as a target gene in grapevine calluses. In addition, VviLAR1 promoter activity was more sensitive to light intensity changes than that of VviLAR2 as determined using a transgenic Arabidopsis leaf system. These results suggested that light intensity had the most prominent effect on trans-flavan-3-ols in grapevine calluses and demonstrated that the two LAR genes had different response patterns to light intensity changes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    2
    Citations
    NaN
    KQI
    []