Increasing stimulus size impairs first- but not second-order motion perception.

2011 
As stimulus size increases, the direction of high-contrast moving stimuli becomes increasingly difficult to perceive. This counterintuitive effect, termed spatial suppression, is believed to reflect antagonistic center-surround mechanisms, which play key roles in tasks requiring sensitivity to relative motion. It is unknown, however, whether second-order motion also exhibits spatial suppression. To test this hypothesis, we measured direction discrimination thresholds for first- and second-order stimuli of varying sizes. The results revealed increasing thresholds with increasing size for first-order stimuli, but demonstrated no spatial suppression of second-order motion. This selective impairment of first-order motion predicts increasing predominance of second-order cues as stimulus size increases. We confirmed this prediction by utilizing compound stimuli that contain first- and second-order information moving in opposite directions. Specifically, we found that for large stimuli, motion perception becomes increasingly determined by the direction of second-order cues. Overall, our findings show a lack of spatial suppression for second-order stimuli, suggesting that the second-order system may have distinct functional roles, roles that do not require high sensitivity to relative motion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    13
    Citations
    NaN
    KQI
    []