Reduced nonradiative recombination in semipolar green-emitting III-N quantum wells with strain-reducing AlInN buffer layers

2019 
Using strain-reducing partially relaxed AlInN buffer layers, we observe reduced nonradiative recombination in semipolar green-emitting GaInN/GaN quantum wells. Since strain is a key issue for the formation of defects that act as nonradiative recombination centers, we aim to reduce the lattice mismatch between GaInN and GaN by introducing an AlInN buffer layer that can be grown lattice-matched along one of the in-plane directions of GaN, even in the semipolar ( 11 2 ¯ 2 ) orientation. With the increasing thickness, the buffer layer shows partial relaxation in one direction and thereby provides a growth template with reduced lattice mismatch for the subsequent GaInN quantum wells. Time-resolved photoluminescence measurements show reduced nonradiative recombination for the structures with a strain-reducing buffer layer.Using strain-reducing partially relaxed AlInN buffer layers, we observe reduced nonradiative recombination in semipolar green-emitting GaInN/GaN quantum wells. Since strain is a key issue for the formation of defects that act as nonradiative recombination centers, we aim to reduce the lattice mismatch between GaInN and GaN by introducing an AlInN buffer layer that can be grown lattice-matched along one of the in-plane directions of GaN, even in the semipolar ( 11 2 ¯ 2 ) orientation. With the increasing thickness, the buffer layer shows partial relaxation in one direction and thereby provides a growth template with reduced lattice mismatch for the subsequent GaInN quantum wells. Time-resolved photoluminescence measurements show reduced nonradiative recombination for the structures with a strain-reducing buffer layer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []