Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: A longitudinal study

2017 
Abstract An increased understanding is needed of the physiological effects and plausible biological mechanisms that link PM 2.5 (particulate matter with an aerodynamic diameter below 2.5 μm) exposure to mortality and morbidities such as atherosclerosis and respiratory disease. PM 2.5 causes carcinogenic health effects. Biomonitoring in humans has suggested that 8-oxo-7, 8-dihydro-2-deoxyguanosine (8-oxodG) and N7-methylguanine (N7-MeG) are correlated with oxidative and methylated DNA damage. Thus, it is meaningful to explore the mechanisms of mutagenesis and carcinogenesis associated with oxidative and methylated DNA damage by simultaneously measuring these two markers. We recruited 72 participants from 2 areas (residential and commercial as well as residential and industrial) in the greater Taipei metropolitan area at baseline. Personal samplers were used to collect 24-hour PM 2.5 -integrated samples. All participants completed an interview, and blood and urine samples were collected the next morning. All collection procedures were repeated twice after a two-month follow-up period. Urinary 8-oxodG and N7-MeG were assayed as biomarkers of oxidative and methylated DNA damage, respectively. Plasma superoxide dismutase (SOD) and glutathione peroxidase-1 (GPX-1) were measured as biomarkers of antioxidants. Urinary 1-hydroxypyrene (1-OHP) was used as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs). The mean PM 2.5 level was 37.3 μg/m 3 at baseline. PM 2.5 concentrations were higher during winter than during spring and summer. After adjusting for confounds through a generalized estimating equation (GEE) analysis, N7-MeG was significantly increased by 8.1% (β = 0.034, 95% CIs = 0.001–0.068) per 10 μg/m 3 increment in PM 2.5 . 8-oxodG levels were positively correlated with N7-MeG according to both cross-sectional and longitudinal analyses, and 1-OHP was significantly associated with increasing 8-oxodG and N7-MeG concentrations. Exposure to PM 2.5 increases methylated DNA damage. The mean level of urinary N7-MeG was 1000-fold higher than that of 8-oxodG.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    21
    Citations
    NaN
    KQI
    []