Elastoplastic transition in a metastable β-Titanium alloy, Timetal-18 – An in-situ synchrotron X-ray diffraction study

2021 
Abstract The elastoplastic transition of a metastable β-Ti alloy, Timetal-18, is studied using in-situ high energy synchrotron X-ray diffraction microscopy (HEDM). The measured evolutions of the complete elastic strain (and stress) tensor(s), resolved shear stress, lattice rotation and rotation of the stress state of the grains are compared with the predictions of the elasto-viscoplastic Micromechanical Analysis of Stress-Strain Inhomogeneities with fast Fourier transform (MASSIF) code instantiated with an experimentally measured microstructure which matched that of the sample. The preferred glide plane of dislocations with ½ Burgers vectors of the BCC alloy was explored. It was found that the polycrystalline stress-strain response could be equally well described by any of the candidate glide planes or combinations thereof (i.e., pencil glide). However, simulations involving slip on {112} planes yielded a marginally better description of the individual grain-level responses, as compared to the simulation involving only the {110} planes. The small (typically
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    105
    References
    4
    Citations
    NaN
    KQI
    []