The Boussinesq-BO equation for algebraic gravity solitary waves in baroclinic atmosphere and the research of squall lines formation mechanism

2017 
Abstract The gravity solitary waves are a kind of waves which are caused by the disturbance of static equilibrium. The nonlinearity concentration of the gravity solitary waves makes the energy assemble together and forms disastrous weather phenomena, such as squall lines. By the calculation condition and theoretical method limit, previous studies tried hard to reduce the variable numbers and discussed the gravity solitary waves in barotropic atmosphere, but the baroclinic problem of atmosphere is inevitable topic. In this paper, from the basic kinetic equations in baroclinic non-static equilibrium atmosphere, by using multi-scale analysis and perturbation method, a new model is derived to describe the algebraic gravity solitary waves, we call it Boussinesq-BO equation. Comparing with the former models, the Boussinesq-BO model can describe the propagation process of waves in two directions and is more suitable for the real atmosphere condition. With the help of the trial function method, an exact solution of Boussinesq-BO equation is obtained and the fission property of algebraic gravity solitary waves is discussed. Finally, we can find that the fission of algebraic gravity solitary waves is also a possible formation mechanism of squall lines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []