Phosphorylation of bacterial L9 and its functional implication in response to starvation stress

2017 
The bacterial L9 (bL9) protein expressed and purified from E. coli is stably phosphorylated. We mapped seven Ser/Thr phosphorylation sites, all of which but one are located at the carboxyl-terminal domain (CTD). When a histidine tag is fused to the C-terminus, bL9 is no longer phosphorylated. Phosphorylation of bL9 causes complete disordering of its CTD and helps cell survival under nutrient-limiting conditions. Previous structural studies of the ribosome have shown that bL9 exhibits two distinct conformations, one of which competes with binding of RelA to the 30s rRNA and prevents RelA activation. Taken together, we suggest that the flexibility of the bL9 CTD enabled by phosphorylation would remove the steric hindrance, serving as a previously unknown mechanism to regulate RelA function and help cell survival under starvation stress. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    4
    Citations
    NaN
    KQI
    []