Autologous bone marrow mononuclear cell therapy for critical limb ischemia is effective and durable

2016 
Objective We have previously shown that autologous bone marrow mononuclear cell (ABMNC) therapy improves measures of limb perfusion, rest pain, wound healing, and amputation-free survival (AFS) at 1 year in patients with critical limb ischemia (CLI). Long-term durability of ABMNC therapy for CLI remains unknown. The objective of the current study was to evaluate long-term clinical outcomes 5 years after treatment. Methods Data were retrospectively gathered from a database and via a patient survey and review of medical records of patients previously enrolled in this phase I/II trial. AFS, freedom from major amputation, and freedom from major adverse limb events (MALE) were calculated using the product-limit estimate. The incidence of cardiac, malignant, and other medical events relevant to the safety of cell therapy were tabulated during the time from treatment to follow-up. Results Twenty-one of the 24 patients (88%) who completed the initial 1-year phase I/II trial were available for the 5-year analysis; AFS was 74% (95% confidence interval [CI], 0.53-0.87), freedom from major amputation was 78% (95% CI, 0.58-0.90), and freedom from MALE was 65% (95% CI, 0.45-0.80). Three patients (14%) had major cardiac events. There were no incidences of malignancies or diagnoses of clinically significant proliferative retinopathy. Fifteen patients (71%) report continued improvement in pain-free walking. Nineteen (90%) patients believed that the study was of significant medical value and would participate again. Conclusions ABMNC therapy provides long-term freedom from AFS, major amputation, and MALE that are comparable with other reports of patients who underwent surgical and endovascular interventions for CLI. Furthermore, no patients developed tumorigenesis or clinically significant retinopathy. Because of the limited number of patients studied, our findings will need to be followed up in a larger phase III trial.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    16
    Citations
    NaN
    KQI
    []