Corrected discrete least-squares meshless method for simulating free surface flows
2012
Abstract In this paper, a modified version of discrete least-squares meshless (DLSM) method is used to simulate free surface flows with moving boundaries. DLSM is a newly developed meshless approach in which a least-squares functional of the residuals of the governing differential equations and its boundary conditions at the nodal points is minimized with respect to the unknown nodal parameters. The meshless shape functions are also derived using the Moving Least Squares (MLS) method of function approximation. The method is, therefore, a truly meshless method in which no integration is required in the computations. Since the second order derivative of the MLS shape function are known to contain higher errors compared to the first derivative, a modified version of DLSM method referred to as corrected discrete least-squares meshless (corrected DLSM) is proposed in which the second order derivatives are evaluated more accurately and efficiently by combining the first order derivatives of MLS shape functions with a finite difference approximation of the second derivatives. The governing equations of fluid flow (Navier–Stokes) are solved by the proposed method using a two-step pressure projection method in a Lagrangian form. Three benchmark problems namely; dam break, underwater rigid landslide and Scott Russell wave generator problems are used to test the accuracy of the proposed approach. The results show that proposed corrected DLSM can be employed to simulate complex free surface flows more accurately.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
10
Citations
NaN
KQI