Controlling the Surface Hydroxyl Concentration by Thermal Treatment of Layered Double Hydroxides
2017
Layered double hydroxides (LDHs) are important materials in the field of catalyst supports, and their surface hydroxyl functionality makes them interesting candidates for supporting well-defined single-site catalysts. Here, we report that the surface hydroxyl concentration can be controlled by thermal treatment of these materials under vacuum, leading to hydroxyl numbers (αOH) similar to those of dehydroxylated silica, alumina, and magnesium hydroxide. Thermal treatment of [Mg0.74Al0.26(OH)2](SO4)0.1(CO3)0.03·0.62(H2O)·0.04(acetone) prepared by the aqueous miscible organic solvent treatment method (Mg2.84Al-SO4-A AMO-LDH) is shown to yield a mixed metal oxide above 300 °C by a combination of thermogravimetric analysis, powder X-ray diffraction (PXRD), BET surface area analysis, and FTIR spectroscopy. PXRD shows the disappearance of the characteristic LDH 00l peaks at 300 °C indicative of decomposition to the layered structure, coupled with a large increase in the BET surface area (95 vs 158 m2 g–1 from tr...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
14
Citations
NaN
KQI