Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change

2008 
Empirical Orthogonal Function (EOF) analysis and the related Principal Components (PC) analysis are used to extract valuable vegetation cover derived information from the National Oceanic and Atmospheric Administration (NOAA-AVHRR)’s Leaf Area Index (LAI) satellite images. Results suggest that from 1982 to 2000 global climate change has contributed to an increase in vegetation cover in the Qinghai-Tibet Plateau. The correlation between rainfall and LAI EOF PC1 and PC2 indicates that rainfall is the major climatic factor influencing interannual variations of average vegetation cover throughout the entire Plateau. However, annual mean vegetation cover trends in the Qinghai-Tibet Plateau are mainly out of phase with air temperature increasing, which is primarily responsible for nonsynchronous changes of vegetation cover. In the southern ridge of the Qinghai-Tibet Plateau, recent warming trends contribute to humid weather and favorable conditions for vegetation growth. By contrast, higher temperatures have led to arid conditions and insufficient rainfall in the northern part of the Plateau, leading to drought and other climatic conditions which are not conducive to increased vegetation cover.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    68
    Citations
    NaN
    KQI
    []