Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction

2014 
We measure thermal transport across a graphene/hexagonal boron nitride (h-BN) interface by electrically heating the graphene and measuring the temperature difference between the graphene and BN using Raman spectroscopy. Because the temperature of the graphene and BN are measured optically, this approach enables nanometer resolution in the cross-plane direction. A temperature drop of 60 K can be achieved across this junction at high electrical powers (14 mW). Based on the temperature difference and the applied power data, we determine the thermal interface conductance of this junction to be 7.4 × 106 Wm−2K−1, which is below the 107–108 Wm−2K−1 values previously reported for graphene/SiO2 interface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    73
    Citations
    NaN
    KQI
    []