Influence of hydrogen co-combustion with diesel fuel on performance, smoke and combustion phases in the compression ignition engine

2018 
Abstract The main objective of this study was to examine impact of hydrogen addition to the compression ignition engine fueled with either rapeseed methyl ester (RME) or 7% RME blended diesel fuel (RME7) on combustion phases and ignition delay as well as smoke and exhaust toxic emissions. Literature review shows in general, hydrogen in those cases is used in small amounts below lower flammability limits. Novelty of this work is in applying hydrogen at amounts up to 44% by energy as secondary fuel to the compression ignition engine. Results from experiments show that increase of hydrogen into the engine makes ignition delay shortened that also affects main combustion phase. In all tests the trends of exhaust HC and CO toxic emissions vs. hydrogen addition were negative. The trend of smokiness decreased steadily with increase of hydrogen. Amounts of hydrogen addition by energy share were limited to nearly 35% due to combustion knock occurring at nominal load.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    21
    Citations
    NaN
    KQI
    []