Neurophysiological effects in cortico-basal ganglia-thalamic circuits of antidyskinetic treatment with 5-HT1A receptor biased agonists

2018 
Abstract Recently, the biased and highly selective 5-HT 1A agonists, NLX-112, F13714 and F15599, have been shown to alleviate dyskinesia in rodent and primate models of Parkinson's disease, while marginally interfering with antiparkinsonian effects of levodopa. To provide more detailed information on the processes underlying the alleviation of dyskinesia, we have here investigated changes in the spectral contents of local field potentials in cortico-basal ganglia-thalamic circuits following treatment with this novel group of 5-HT 1A agonists or the prototypical agonist, 8-OH-DPAT. Dyskinetic symptoms were consistently associated with 80 Hz oscillations, which were efficaciously suppressed by all 5-HT 1A agonists and reappeared upon co-administration of the antagonist, WAY100635. At the same time, the peak-frequency of fast 130 Hz gamma oscillations and their cross-frequency coupling to low-frequency delta oscillations were modified to a different extent by each of the 5-HT 1A agonists. These findings suggest that the common antidyskinetic effects of these drugs may be chiefly attributable to a reversal of the brain state characterized by 80 Hz gamma oscillations, whereas the differential effects on fast gamma oscillations may reflect differences in pharmacological properties that might be of potential relevance for non-motor symptoms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    12
    Citations
    NaN
    KQI
    []