Precursor ratio optimizations for the synthesis of colloidal CZTS nanoparticles for photocatalytic degradation of malachite green

2018 
Abstract Cu 2 ZnSnS 4 (CZTS) is a foremost applicant material for photovoltaics application constituting environmentally friendly elements in Zn- rich Cu-poor configuration (Zn/Sn > 1, Cu/(Zn + Sn)  1, for Zn-rich) varied keeping other conditions and precursor ratios (Cu/(Zn + Sn), S/Metal = 1) constant. Different nanorods obtained were characterized by X-Ray Diffraction (XRD), Photoluminescence (PL) spectra and UV–Vis absorption spectroscopy and Transmission Electron Microscopy (TEM) respectively. The quality of different CZTS samples obtained was analyzed by XPS depth profiling analysis. Zn incorporation in both cases was optimized with respect to tin (Sn), phosphorus (P) and copper (Cu) for photocatalysis application. It was found that addition of more Zn into CZTS samples in precursors during synthesis may lead to lower incorporation of zinc amount, which results in varied properties advantageous for different photoactive applications. On the basis of different characterizations, CZTS nanorods synthesized with precursor ratio Zn: Sn = 2:1 was found to exhibits excellent photocatalytic activity as compared to other CZTS nanoparticles with precursor ratio Zn:Sn = 1.2:1 and 4:1 respectively, toward degradation of Malachite Green dye under sunlight.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    10
    Citations
    NaN
    KQI
    []