MICROMECHANICS OF STRESS-INDUCED MARTENSITIC TRANSFORMATION IN MONO- AND POLYCRYSTALLINE SHAPE MEMORY ALLOYS; Ni-Ti

1999 
Stress-induced martensitic transformation in single crystals and polycrystals are examined on the basis of micromechanics. A simple method to find a stress- and elastic energy-free martensite plate (combined variant), which consists of two variants, is presented. External and internal stresses preferentially produce a combined variant, to which the stresses supply the largest work upon its formation. Using the chemical energy change with temperature, the phase boundary between the parent and martensitic phases is determined in stress-temperature diagrams. The method is extended to a polycrystal, modeled as an aggregate of spherical grains. The grains constitute axisymmetric multiple fiber textures and a uniaxial load is applied to the fiber axis. The occurrence and progress of transformation are followed by examining a stress state in the grains. The stress is the sum of the external stress and internal stress. The difference in the fraction of transformation and, thus, in transformation strains between the grains causes the internal stress, which is calculated with the average field method. After a short transition stage, all the grains start to transform, and the external uniaxial stress to continue the transformation increases linearly thereafter. The external stress at the end of the transition is defined as the macroscopicmore » yield stress due to the transformation in polycrystals. The yield stress tends to saturate, as the number of the textures increases.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    2
    Citations
    NaN
    KQI
    []