Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation

2018 
The digital optical phase conjugation (DOPC) technique is being actively developed for optical focusing and imaging through or inside complex media. Due to its time-reversal nature, DOPC has been exploited to regenerate different intensity targets. However, whether the targets with three-dimensional information through complex media could be recovered has not been experimentally demonstrated, to the best of our knowledge. Here, we present a method to regenerate structured laser beams based on DOPC. Although only the phase of the original scattered wave is time reversed, the reconstruction of a quasi-Bessel beam and vortex beams through a multimode fiber (MMF) is demonstrated. The regenerated quasi-Bessel beam shows the features of sub-diffraction focusing and a longer depth of field with respect to a Gaussian beam. Moreover, the reconstruction of vortex beams shows the fidelity of DOPC both in amplitude and phase, which is demonstrated for the first time, to the best of our knowledge. We also prove that the reconstruction results of DOPC through the MMF are indeed phase conjugate to the original targets. We expect that these results could be useful in super-resolution imaging and optical micromanipulation through complex media, and further pave the way for achieving three-dimensional imaging based on DOPC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    12
    Citations
    NaN
    KQI
    []