Farm Weather Insurance Assessment
2021
The pilot aimed to develop services supporting both the risk and the damage assessment in the agro-insurance domain. It is based on the use of remotely sensed data, integrated with meteorological data, and adopts machine learning and artificial intelligence tools. Netherlands and Greece have been selected as pilot areas . In the Netherlands, the pilot was focused on potato crops for the identification of areas with higher risk, based on the historical analysis of heavy rains. In addition, it covered automated detection of potato parcels with anomalous behaviours (damage assessment) from satellite data, meteorological parameters and soil characteristics. In Greece, the pilot worked with 7 annual crops of high economic interest to the national agricultural sector. The crops have been modelled exploiting the last 3-year NDVI measurements to identify their deviations from the normal crop health behaviour for an early identification of affected parcels in case of adverse events. The models were successfully tested on a flooding event that occurred in 2019 in the Komotini region. Even though the proposed methodologies should be tested over larger areas and compared against a larger validation dataset, the results already now demonstrate how to reduce the operating costs of damage assessors through a more precise and automatic risk assessment. Additionally, the identification of parameters that most affect the crop yield could transform the insurance industry through index-based solutions allowing to dramatically cut costs.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
5
References
0
Citations
NaN
KQI