Exogenous FGF-2 improves biological activity of endothelial progenitor cells exposed to high glucose conditions

2018 
ABSTRACT Purpose: To investigate the effects of exogenous basic fibroblast growth factor -2 (FGF-2) on the biological activity of endothelial progenitor cells (EPCs) exposed to high glucose conditions. Materials and Methods: 1) Bone marrow EPCs from C57BL/6 mice were isolated and cultured in vitro. EPC purity was identified by flow cytometry and immunofluorescence staining. 2) Apoptosis was detected by TUNEL assay. Migration and tube formation ability was detected by Transwell chamber and Matrigel assays, respectively. The expression and activation of β-catenin was detected by Western blot. 3) Doppler flowmetry was used to detect the effect of FGF2 on blood flow recovery in ischemic hind limbs of mice. Results: 1) FGF-2 treatment reversed high glucose induced growth inhibition of EPCs. FGF-2 treatment also increased migration and tube formation ability of EPCs even in high glucose conditions. 2) Western blot analysis demonstrated that the percentage of activated β-catenin/total β-catenin in the high glucose group were significantly lower than that in the control group, while FGF-2 treatment reversed high glucose induced β-catenin inhibition. 3) In vivo experiments demonstrated that the blood flow recovery in ischemic hind limbs of mice was significantly improved after FGF-2 treatment. Conclusion: Exogenous FGF-2 could play a role in the functional repair of damaged EPC exposed to high glucose conditions, via the activation of the Wnt/β-catenin signaling pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []