Using Intelligence Green Building Materials to Evaluate Color Change Performance

2020 
Environmental protection is an important issue in modern society. Most construction demolition wastes cannot be easily decomposed, thus occupying a lot of space in landfill. Reducing the demand for new resources is an efficient approach to decrease the environmental burden. Most green buildings are made from reused and recycled materials. Although there are a variety of green building materials available on the market, there is no material, as yet, with thermochromic functionality. This study used a form of face bricks, and six recovered materials, including wood chips, iron powder, fallen leaves, concrete, newspaper, and silt, to make smart green building materials. The modules were made in accordance with Taiwan’s green building material regulations. The discoloration efficiency of indoor and outdoor green building materials was tested, and the RGB (red, green, blue) values of the face bricks were measured by a color analyzer to observe the discoloration effect. The findings show that among the A, B, C, and D groups, Group D exhibited the optimal rate of change in color, and the rates of change in the six recycled waste materials of indoor Group D were wood chips > newspaper > fallen leaves > concrete > iron powder > silt, while the rates of change in the outdoor group were newspaper > wood chips > fallen leaves. This study successfully reused waste materials to reduce the environmental burden, achieve sustainable environmental protection, and ensure both the aesthetics and quality of the building materials. The results of this study can offer an alternative choice to architects or space designers when selecting green building materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []