A Uni-Axial Nano-Displacement Micro-Tensile Test of Individual Constituents from Bulk Material

2017 
For both single-phase and multiphase metallic materials, it is necessary to understand the mechanical behavior on the grain-size scale in detail to get information that is not obtainable from macro-scale mechanical characterizations. This paper presents a methodology for uniaxial tensile testing of micro-specimens isolated from a bulk material. The proposed concept of multiple parallel micro-tensile specimens at the tip of a macro-sized wedge reduces the alignment work and offers an easy way for specimen handling. The selection of site-specific specimens is based on detailed microstructural and crystallographic characterization. Three kinds of representative specimens are presented to illustrate the wide range of application of the methodology for a variety of materials. Accurate, reproducible measurement of force (2.5 μN resolution) and displacement (~10 nm resolution) is demonstrated, while accurate alignment (in-plane rotational and out-of-plane tilt misalignment of <0.2°) limits the stress due to bending to <0.2% of the imposed uni-axial stress. Combined with detailed material characterization on both sides of the micro-specimens, this method yields detailed insights into the micro-mechanics of bulk materials which is hard to obtain from traditional macro-mechanical tests.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    8
    Citations
    NaN
    KQI
    []