Glasses Detection Using Convolutional Neural Networks
2016
Glasses detection plays an important role in face recognition and soft biometrices for person identification. However, automatic glasses detection is still a challenging problem under real application scenarios, because face variations, light conditions, and self-occlusion, have significant influence on its performance. Inspired by the success of Deep Convolutional Neural Networks (DCNN) on face recognition, object detection and image classification, we propose a glasses detection method based on DCNN. Specifically, we devise a Glasses Network (GNet), and pre-train it as a face identification network with a large number of face images. The pre-trained GNet is finally fine-tuned as a glasses detection network by using another set of facial images wearing and not wearing glasses. Evaluation experiments have been done on two public databases, Multi-PIE and LFW. The results demonstrate the superior performance of the proposed method over competing methods.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
21
References
2
Citations
NaN
KQI