Glasses Detection Using Convolutional Neural Networks

2016 
Glasses detection plays an important role in face recognition and soft biometrices for person identification. However, automatic glasses detection is still a challenging problem under real application scenarios, because face variations, light conditions, and self-occlusion, have significant influence on its performance. Inspired by the success of Deep Convolutional Neural Networks (DCNN) on face recognition, object detection and image classification, we propose a glasses detection method based on DCNN. Specifically, we devise a Glasses Network (GNet), and pre-train it as a face identification network with a large number of face images. The pre-trained GNet is finally fine-tuned as a glasses detection network by using another set of facial images wearing and not wearing glasses. Evaluation experiments have been done on two public databases, Multi-PIE and LFW. The results demonstrate the superior performance of the proposed method over competing methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    2
    Citations
    NaN
    KQI
    []