Activation of mammalian cytoplasmic dynein in multimotor motility assays

2019 
Long-range intracellular transport is facilitated by motor proteins like kinesin-1 and cyto-plasmic dynein walking along microtubules (MTs). These motors often work in teams for the transport of various intracellular cargos. While transport by multiple kinesin-1 motors has been studied extensively in the past, collective effects of cytoplasmic dynein are less well understood. On the level of single molecules, mammalian cytoplasmic dynein is not active in the absence of dynactin and adaptor proteins. However, when assembled into a team bound to the same cargo, processive motility has been observed. The underlying mechanism of this activation is not known. Here, we found that in MT gliding motility assays the gliding velocity increased with dynein surface density and MT length. Developing a mathematical model based on single-molecule parameters, we were able to simulate the observed behavior. Integral to our model is the usage of an activation term, which describes a mechanical activation of individual dynein motors when being stretched by the other motors. We hypothesize this activation to be similar to the activation of single dynein motors by dynactin and adaptor proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    8
    Citations
    NaN
    KQI
    []