Influence of temperature on rotational diffusion of dipolar laser dyes in glycerol

2012 
Abstract Temperature dependent rotational diffusion of three medium sized dipolar laser dyes viz., Fluorescein 27 (F27), Fluorescein Na (FNa) and Sulforhodamine B (SRB) has been studied in glycerol using both steady-state and time-resolved fluorescence depolarization techniques. The rotational reorientation times of these probes are observed to vary linearly as a function of viscosity over the range of temperature studied. The results have been discussed and analyzed in the light of Stokes–Einstein–Debye (SED) hydrodynamic theory. The reorientation times of the probes follow a trend that is well within hydrodynamic slip and stick limits. Finally, the applicability of quasihydrodynamic models of Geirer–Wirtz (GW) and Dote–Kivelson–Schwartz (DKS) is discussed with a view to understand the nature of solute–solvent interactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    4
    Citations
    NaN
    KQI
    []