Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation

2018 
The 26 S proteasome is the primary eukaryotic degradation machine and thus critically involved in numerous cellular processes. The hetero-hexameric ATPase motor of the proteasome unfolds and translocates targeted protein substrates into the open gate of a proteolytic core, while a proteasomal deubiquitinase concomitantly removes substrate-attached ubiquitin chains. However, the mechanisms by which ATP hydrolysis drives the conformational changes responsible for these processes have remained elusive. Here we present the cryo-EM structures of four distinct conformational states of the actively ATP-hydrolyzing, substrate-engaged 26 S proteasome. These structures reveal how mechanical substrate translocation accelerates deubiquitination, and how ATP-binding, hydrolysis, and phosphate-release events are coordinated within the AAA+ motor to induce conformational changes and propel the substrate through the central pore.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    167
    Citations
    NaN
    KQI
    []