Enhanced Super-Resolution Mapping of Urban Floods Based on the Fusion of Support Vector Machine and General Regression Neural Network

2019 
Super-resolution mapping of urban flood (SMUF) is one of the hotspots in remote sensing and urban environment research. In this letter, a new SMUF method based on the fusion of support vector machine and general regression neural network (FSVMGRNN) was proposed to achieve enhanced performance. An SVM-SMUF algorithm was developed and a fusion criterion was formulated. Then, the FSVMGRNN-SMUF algorithm was developed. The results of FSVMGRNN-SMUF were evaluated using Landsat 8 OLI imagery of two representative cities in China. FSVMGRNN-SMUF yielded the most accurate SMUF results among the five SMUF methods according to visual comparisons and quantitative comparisons. The mapping accuracy of FSVMGRNN-SMUF related to the kernel functions was also analyzed and discussed. The results of this letter will help to boost practical applications of median-low resolution remote sensing images in urban flooding mapping, and to strengthen the means for monitoring and assessing urban flooding disasters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []