Magnetic Interactions in Iron Superconductors: A Review

2016 
Abstract High-temperature superconductivity in iron pnictides and chalcogenides emerges when a magnetic phase is suppressed. The multi-orbital character and the strength of correlations underlie this complex phenomenology, involving magnetic softness and anisotropies, with Hund's coupling playing an important role. We review here the different theoretical approaches used to describe the magnetic interactions in these systems. We show that taking into account the orbital degree of freedom allows us to unify in a single phase diagram the main mechanisms proposed to explain the ( π , 0 ) order in iron pnictides: nesting-driven superconductivity, exchange between localised spins, and Hund-induced magnetic state with orbital differentiation. Comparison of theoretical estimates and experimental results helps locate the Fe superconductors in the phase diagram. In addition, orbital physics is crucial to address the magnetic softness, the doping-dependent properties, and the anisotropies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []