Improving Specificity of Lung Cancer Screening CT Using Deep Learning

2020 
PURPOSE Evaluate the utility of deep learning to improve the specificity and sensitivity of lung cancer screening with low-dose helical computed tomography (LDCT), relative to the Lung-RADS guidelines. METHOD AND MATERIALS We analyzed 42,943 CT studies from 14,863 patients, 620 of which developed biopsy-confirmed cancer. All cases were from the National Lung Screening Trial (NLST) study. We randomly split patients into a training (70%), tuning (15%) and test (15%) sets. A study was marked “true” if the patient was diagnosed with biopsy confirmed lung cancer in the same screening year as the study. A deep learning model was trained over 3D CT volumes (400x512x512) as input. We used the 95% specificity operating point based on the tuning set, and evaluated our approach on the test set. To estimate radiologist performance, we retrospectively applied Lung-RADS criteria to each study in the test set. Lung-RADS categories 1 to 2 constitute negative screening results, and categories 3 to 4 constitute positive results. Neither the model nor the Lung-RADS results took into account prior studies, but all screening years were utilized in evaluation. RESULTS The area under the receiver operator curve of the deep learning model was 94.2% (95% CI 91.0, 96.9). Compared to Lung-RADS on the test set, the trained model achieved a statistically significant absolute 9.2% (95% CI 8.4, 10.1) higher specificity and trended a 3.4% (95% CI -5.2, 12.6) higher sensitivity (not statistically significant).Radiologists qualitatively reviewed disagreements between the model and Lung-RADS. Preliminary analysis suggests that the model may be superior in distinguishing scarring from early malignancy. CONCLUSION A deep learning based model improved the specificity of lung cancer screening over Lung-RADS on the NLST dataset and could potentially help reduce unnecessary procedures. This research could supplement future versions of Lung-RADS; or support assisted read or second read workflows. CLINICAL RELEVANCE/APPLICATION While Lung-RADS criteria is recommended for lung cancer screening with LDCT, there is still an opportunity to reduce false-positive rates which lead to unnecessary invasive procedures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []