Attenuated Pgc-1α Isoforms following Endurance Exercise with Blood Flow Restriction.

2016 
Introduction: Exercise performed with blood flow restriction simultaneously enhances the acute responses to both myogenic and mitochondrial pathways with roles in training adaptation. We investigated isoform-specific gene expression of the peroxisome proliferator-activated receptor gamma (PPARG) coactivator 1 and selected target genes and proteins regulating skeletal muscle training adaptation. Methods: 9 healthy, untrained males participated in a randomized, counter-balanced, cross-over design in which each subject completed a bout of low-intensity endurance exercise performed with blood flow restriction (15 min cycling at 40% of VO2peak, BFR-EE), endurance exercise (30 min cycling at 70% of VO2peak, EE) or resistance exercise (4 x 10 repetitions of leg press at 70% of 1-repetition maximum, RE) separated by at least one week recovery. A single resting muscle biopsy (vastus lateralis) was obtained two weeks before the first exercise trial (rest) and 3 h after each boat. Results: Total PGC-1α mRNA abundance, along with all four isoforms, increased above rest with EE only (P<0.05) being higher than BFR-EE (P<0.05). PGC-1α1, 2 and 4 were higher after EE compared to RE (P<0.05). EE also increased VEGF, Hif-1α and MuRF-1 mRNA abundance above rest (P<0.05) while COXIV mRNA expression increased with EE compared to BFR-EE (P<0.05). Conclusion: The attenuated expression of all four PGC- 1α isoforms when endurance exercise is performed with blood flow restriction suggests this type of exercise provides an insufficient stimulus to activate the signaling pathways governing mitochondrial and angiogenesis responses observed with moderate- to high intensity endurance exercise.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    18
    Citations
    NaN
    KQI
    []