An adaptive non-zero mean damping model for trajectory tracking of hypersonic glide vehicles

2021 
Abstract In this paper, we proposed an adaptive non-zero mean damping oscillation model, aiming to solve the trajectory tracking problem of hypersonic glide vehicles (HGVs). To this end, an adaptive non-zero mean damping oscillation model (ANMDO) is established based on the maneuver patterns of HGVs, the proposed model consists of the mean and maneuvering components of HGV's accelerations. In particular, a sine autocorrelation random process is applied to model the mean component, while a first-order Markov process is introduced to compensate its maneuvering counterpart that is taken as the perturbation. Moreover, we proceed to introduce the Kalman filter to estimate the trajectory, while the dynamic errors of the proposed model are analytically developed. Simulation results verified that the proposed model can achieve a better tracking accuracy and reasonable convergence compared with the conventional sine correlation model and the Singer model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []