Ultra-broadband and covalently linked core-shell CoFe2O4@PPy nanoparticles with reduced graphene oxide for microwave absorption

2021 
Abstract Covalent bond usually ensures a stable connection between nonmetallic atoms. However, the traditional reflux method usually requires the construction of complex instruments and equipment with tedious steps to ensure airtightness and reaction stability. In this work, an advanced method is adopted to bind core-shell CoFe2O4@PPy and rGO tightly via the aid of 2-(1H-pyrrol-1-yl)ethanamine (PyEA), dispense with a high-temperature environment or protective gas. Cobalt ferrite core and polypyrrole shell collaborate to approach suitable magnetic and conduction loss, while reduced graphene oxide usually provides a stable sheet structure for interface multiple reflections, and replenish the insufficient dielectric loss. The filled biscuit-shaped covalently bond CoFe2O4@PPy-rGO has a fantastically broad absorption bandwidth of 13.12GHz under the thickness of 3.6mm, together with a minimum reflection loss of -50.1dB at 6.56GHz, achieving both impedance matching and attenuation matching, and effectively responding to all electromagnetic waves in the X and Ku bands. Thus, the covalently bonded CoFe2O4@PPy-rGO has potential application in broadband absorption.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    11
    Citations
    NaN
    KQI
    []