Modeling prostate anatomy from multiple view TRUS images for image-guided HIFU therapy

2007 
Current planning methods for transrectal high-intensity focused ultrasound treatment of prostate cancer rely on manually defining treatment regions in 15-20 sector transrectal ultrasound (TRUS) images of the prostate. Although effective, it is desirable to reduce user interaction time by identifying functionally related anatomic structures (segmenting), then automatically laying out treatment sites using these structures as a guide. Accordingly, a method has been developed to effectively generate solid three-dimensional (3-D) models of the prostate, urethra, and rectal wall from boundary trace data. Modeling the urethra and rectal wall are straightforward, but modeling the prostate is more difficult and has received much attention in the literature. New results presented here are aimed at overcoming many of the limitations of previous approaches to modeling the prostate while using boundary traces obtained via manual tracing in as few as 5 sector and 3 linear images. The results presented here are based on a new type of surface, the Fourier ellipsoid, and the use of sector and linear TRUS images. Tissue-specific 3-D models will ultimately permit finer control of energy deposition and more selective destruction of cancerous regions while sparing critical neighboring structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    9
    Citations
    NaN
    KQI
    []