Controlling the Bit Rate of Multi-Object Videos With Noncooperative Game Theory

2010 
This paper proposes an object-level rate control algorithm to jointly controlling the bit rates of multiple video objects. Utilizing noncooperative game theory, the proposed rate control algorithm mimics the behaviors of players representing video objects. Each player competes for available bits to optimize its visual quality. The algorithm finds an ?optimal solution? in that it conforms to the mixed strategy Nash equilibrium, which is the probability distribution of the actions carried by the players that maximizes their expected payoffs (the number of bits). The game is played iteratively, and the expected payoff of each play is accumulated. The game terminates when all of the available bits for the specific time instant have been distributed to video object planes (VOPs). The advantage of the proposed scheme is that the bidding objects divide the bits among themselves automatically and fairly, according to their encoding complexity, and with an overall solution that is strategically optimal under the given circumstances. To minimize buffer fluctuation and avoid buffer overflow and underflow, a proportional-integral-derivative (PID) control based buffer policy is utilized.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    13
    Citations
    NaN
    KQI
    []