Preventive effect of rosiglitazone on liver injury in a mouse model of decompression sickness.

2017 
BACKGROUND AND AIMS: Severe decompression sickness (DCS) is a multi-organ injury. This study investigated the preventive effects of rosiglitazone on liver injury following rapid decompression in mice and examined the underlying mechanisms. METHODS: Mice were randomly divided into four groups: a control group, vehicle group, and rosiglitazone (5 and 10 mg·kg⁻¹) groups, the latter three being exposed to a pressure of 911 kPa. Haematoxylin and eosin staining, plasma levels of alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase and blood cell counts were used to evaluate liver injury at 30 min after rapid decompression. The expression of endothelial and inducible nitric oxide synthase (iNOS) and its phosphorylation were measured to uncover the underlying molecular mechanisms. RESULTS: A significant increase in plasma ALT, red blood cells and platelets, and a decrease in neutrophils were observed in the vehicle group. Furthermore, the expression of iNOS, E-selectin and the total level of NO in hepatic tissue, and soluble E-selectin in the plasma were significantly elevated in the vehicle group. Rosiglitazone pre-treatment prevented the increases in ALT (and AST), soluble E-selectin concentration, red blood cells and platelet counts. Moreover, rosiglitazone reduced over-expression of iNOS and the NO level, prevented the fall in neutrophil count and promoted the phosphorylation of iNOS in the liver. CONCLUSIONS: Pre-treatment with rosiglitazone ameliorated liver injury from severe DCS. This preventive effect may be partly mediated by stimulating endothelial NO production, improving endothelial function and limiting inflammatory processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []