Hybrid Microwave-Radiation Patterns for High-Fidelity Quantum Gates with Trapped Ions

2020 
We present a method that combines continuous and pulsed microwave-radiation patterns to achieve robust interactions among hyperfine trapped ions placed in a magnetic field gradient. More specifically, our scheme displays continuous microwave drivings with modulated phases, phase flips, and $\ensuremath{\pi}$ pulses. This leads to high-fidelity entangling gates that are resilient against magnetic field fluctuations, changes in the microwave amplitudes, and crosstalk effects. Our protocol runs with arbitrary values of microwave power, which includes the technologically relevant case of low microwave intensities. We demonstrate the performance of our method with detailed numerical simulations that take into account the main sources of decoherence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    7
    Citations
    NaN
    KQI
    []