Cell-Inspired Biomaterials for Modulating Inflammation

2021 
Inflammation is a crucial part of wound healing and pathogen clearance. However, it can also play a role in exacerbating chronic diseases and cancer progression when not regulated properly. A subset of current innate immune engineering research is focused on how molecules like lipids, proteins, and nucleic acids native to a healthy inflammatory response can be harnessed in the context of biomaterial design to promote healing, decrease disease severity, and prolong survival. The engineered biomaterials in this review inhibit inflammation by releasing anti-inflammatory cytokines, sequestering pro-inflammatory cytokines, and promoting phenotype switching of macrophages in chronic inflammatory disease models. Conversely, other biomaterials discussed here promote inflammation by mimicking pathogen invasion in order to inhibit tumor growth in cancer models. The form that these biomaterials take span a spectrum from nanoparticles to large-scale hydrogels to surface coatings on medical devices. Cell-inspired molecules have been incorporated in a variety of creative ways, including loaded into or onto the surface of biomaterials or used as the biomaterials themselves.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    121
    References
    0
    Citations
    NaN
    KQI
    []