Bio-functionalized MWCNT/hyperbranched polyurethane bionanocomposite for bone regeneration

2015 
The proper fabrication of biomaterials, particularly for purposes like bone regeneration, is of the utmost importance for the clinical success of materials that fulfill the design criteria at bio-interfacial milieu. Building on this aspect, a polyurethane nanocomposite (PNC) was fabricated by the combination of rapeseed protein functionalized multi-walled carbon nanotubes (MWCNTs) and vegetable-oil-based hyperbranched polyurethane. Biofunctionalized MWCNTs showed incredible biocompatibility compared to pristine MWCNTs as ascertained via in vitro and in vivo studies. PNC showed enhanced MG63 cell differentiation ability compared to the control and carboxyl functionalized MWCNT-based nanocomposite, as postulated by alkaline phosphatase activity together with better cellular adhesion, spreading and proliferation. Consequently, a critical-sized fracture gap (6 mm) bridged by the sticky PNC scaffold illustrated rapid bone neoformation within 30–45 d, with 90–93% of the defect area filling up. Histopathological studies demonstrated the reorganization of the normal tibial architecture and biodegradation of the implant. The subsequent toxicological study through cytokine expression, biochemical analysis and hematological studies suggested non-immunogenic and non-toxic effects of PNCs and their degraded/leached products. Their excellent bio-physiological features with high load-bearing ability (49–55.5 Mpa), ductility (675–790%) and biodegradability promote them as the best alternative biomaterials for bone regeneration in a comprehensive manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    13
    Citations
    NaN
    KQI
    []