Durable and Efficient Hollow Porous Oxide Spinel Microspheres for Oxygen Reduction

2017 
Summary Transition metal oxide catalysts with high oxygen reduction activity and durability are highly desirable for use in fuel cells and metal-air batteries. Herein we report, for the first time, the oxygen reduction activity of hollow porous spinel AB 2 O 4 microspheres, where A = Zn 2+ and B = Mn 3+ and/or Co 3+ (i.e., ZnMn x Co 2−x O 4 ). Among them, ZnMnCoO 4 ( x  = 1) microspheres exhibit the best oxygen reduction activity with a half-wave-potential only 50 mV lower than that of the Pt/C counterpart and an excellent durability in the alkaline solution. Importantly, the electronic transition of Co 3+ ions from low-spin state in commercial Co 3 O 4 catalyst to a mixed high-spin and low-spin state in ZnMnCoO 4 catalyst was found to weaken the Co 3+ -OH bond and facilitate the O 2− /OH − displacement. The density functional theory calculation substantiated that ZnMnCoO 4 displayed a more favorable binding energy with O 2 and oxygenated species, thereby enabling the fast reaction kinetics in the oxygen reduction reaction process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    116
    Citations
    NaN
    KQI
    []