Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer.

2013 
Abstract The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure–molecular area ( Π – A ) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5′-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir–Blodgett technique revealed mono-, bi- ( Π  ≥ 2 mN/m) and multilayer formation ( Π  ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11mer covalently attached at the terminus to polypropyleneoxide (PPO).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []