Deep Rating and Review Neural Network for Item Recommendation.

2021 
To alleviate the sparsity issue, many recommender systems have been proposed to consider the review text as the auxiliary information to improve the recommendation quality. Despite success, they only use the ratings as the ground truth for error backpropagation. However, the rating information can only indicate the users’ overall preference for the items, while the review text contains rich information about the users’ preferences and the attributes of the items. In real life, reviews with the same rating may have completely opposite semantic information. If only the ratings are used for error backpropagation, the latent factors of these reviews will tend to be consistent, resulting in the loss of a large amount of review information. In this article, we propose a novel deep model termed deep rating and review neural network (DRRNN) for recommendation. Specifically, compared with the existing models that adopt the review text as the auxiliary information, DRRNN additionally considers both the target rating and target review of the given user-item pair as ground truth for error backpropagation in the training stage. Therefore, we can keep more semantic information of the reviews while making rating predictions. Extensive experiments on four publicly available datasets demonstrate the effectiveness of the proposed DRRNN model in terms of rating prediction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []