The Rabbit Kidney Tubule Simultaneously Degrades and Synthesizes Glutamate A 13C NMR STUDY
1997
Abstract The rabbit kidney does not readily metabolize but synthesizes glutamine at high rates by pathways that remain poorly defined. Therefore, the metabolism of variously labeled [13C]- and [14C]glutamates has been studied in isolated rabbit kidney tubules with and without acetate. CO2, glutamine, and alanine were the main carbon and nitrogenous end products of glutamate metabolism but no ammonia accumulated. Absolute fluxes through enzymes involved in glutamate metabolism, including enzymes of four different cycles operating simultaneously, were assessed by combining mainly the 13C NMR data with a new model of glutamate metabolism. In contrast to a previous conclusion of Klahr et al. (Klahr, S., Schoolwerth, A. C., and Bourgoignie, J. J. (1972) Am. J. Physiol. 222, 813-820), glutamate metabolism was found to be initiated by glutamate dehydrogenase at high rates. Glutamate dehydrogenase also operated at high rates in the reverse direction; this, together with the operation of the glutamine synthetase reaction, masked the release of ammonia. Addition of acetate stimulated the operation of the “glutamate → α-ketoglutarate → glutamate” cycle and the accumulation of glucose but reduced both the net oxidative deamination of glutamate and glutamine synthesis. Acetate considerably increased flux through α-ketoglutarate dehydrogenase and citrate synthase at the expense of flux through phosphoenolpyruvate carboxykinase; acetate also caused a large decrease in flux through alanine aminotransferase, pyruvate dehydrogenase, and the “substrate cycle” involving oxaloacetate, phosphoenolpyruvate, and pyruvate.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
19
Citations
NaN
KQI