TRİBOELEKTRİK NANOJENERATÖRLER İLE ENERJİ HASADI: TEORİK KÖKEN, ÇALIŞMA PRENSİBİ VE ÇALIŞMA MODLARI

2021 
Light-weight and flexible components are needed for energy generation and storage in order for cell phones and wearable electronics to carry out their functions uninterruptedly. Conventional batteries are insufficient in terms of practicability, flexibility, comfort and light weight. This situation causes energy harvesters to attract more interest. Energy harvesters collect energy present in the environment and transfer it into electrical energy which can be used by wearables and other electronics. Harvesting environmental energy not only provides ease of use, but it also generates environmentally- friendly energy. According to the energy source and conversion principle; energy harvesters can be classified in groups such as photovoltaic, thermoelectric, electromagnetic, piezoelectric, and triboelectric energy harvesters. Triboelectric energy harvesters convert static electricity induced by friction, into usable energy. With triboelectric energy harvesters, energy can be generated using vertical contact separation, in- plane sliding, single electrode and free-standing triboelectric layer modes. Triboelectric energy harvesters were developed for the first time in 2012, and then have been the subject of intense research studies. With their high power output, compliance with nanotechnology, broad material and design choices, small dimensions, light and flexible structure, low cost and adaptability to wearable systems, triboelectric energy harvesters show promise to be the energy technology of the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []