Polymer Optical Constants from Long-Range Corrected DFT Calculations

2016 
A methodology to calculate refractive indices of plastics based on the Lorentz–Lorenz equation has been proposed. The polarizability of the nonconjugated polymer repeat units is predicted using the long-range corrected functionals. The end effect corrections in repeat unit models are essential to achieve accuracy similar to that observed for molecular liquids (ca. 1% in mean absolute deviation). The functionals with 100% Hartree–Fock (HF) exchange in the long-range limit perform best for aromatic and other hydrogen-deficient compounds; the Coulomb-attenuated hybrid exchange-correlation functional (CAM-B3LYP) performs very well for hydrogen-rich (usually, fully saturated) compounds. Exceptionally good agreement is observed for the sets of wavelength-dependent refractive index data for polystyrene, poly(methyl methacrylate), and for poly(perfluoro-4-vinyloxy-1-butene) (CYTOP), for which the root-mean-square deviations are 0.004, 0.002, and 0.004, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    6
    Citations
    NaN
    KQI
    []