Artificial Intelligence-based Detection of FGFR3 Mutational Status Directly from Routine Histology in Bladder Cancer: A Possible Preselection for Molecular Testing?
2021
Abstract Background Fibroblast growth factor receptor (FGFR) inhibitor treatment has become the first clinically approved targeted therapy in bladder cancer. However, it requires previous molecular testing of each patient, which is costly and not ubiquitously available. Objective To determine whether an artificial intelligence system is able to predict mutations of the FGFR3 gene directly from routine histology slides of bladder cancer. Design, setting, and participants We trained a deep learning network to detect FGFR3 mutations on digitized slides of muscle-invasive bladder cancers stained with hematoxylin and eosin from the Cancer Genome Atlas (TCGA) cohort (n = 327) and validated the algorithm on the “Aachen” cohort (n = 182; n = 121 pT2–4, n = 34 stroma-invasive pT1, and n = 27 noninvasive pTa tumors). Outcome measurements and statistical analysis The primary endpoint was the area under the receiver operating curve (AUROC) for mutation detection. Performance of the deep learning system was compared with visual scoring by an uropathologist. Results and limitations In the TCGA cohort, FGFR3 mutations were detected with an AUROC of 0.701 (p Conclusions Our computer-based artificial intelligence system was able to detect genetic alterations of the FGFR3 gene of bladder cancer patients directly from histological slides. In the future, this system could be used to preselect patients for further molecular testing. However, analyses of larger, multicenter, muscle-invasive bladder cancer cohorts are now needed in order to validate and extend our findings. Patient summary In this report, a computer-based artificial intelligence (AI) system was applied to histological slides to predict genetic alterations of the FGFR3 gene in bladder cancer. We found that the AI system was able to find the alteration with high accuracy. In the future, this system could be used to preselect patients for further molecular testing.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
19
References
3
Citations
NaN
KQI