Abrasive slurry wear behavior of stainless steel surface produced by plasma transferred arc hardfacing process

2008 
Abrasive slurry wear is generally defined as a mechanical interaction in which material is lost from a surface which is in contact with a moving particle-laden liquid. Slurry wear abrasion occurs in extruders, slurry pumps, and pipes carrying slurry of minerals and ores in mineral processing industries. The life of components used under slurry abrasion conditions is governed by the process parameters, properties of the abrasive particles in the slurry and the material properties. This paper analyzes in detail the effects of operating variables such as abrasive particle size, slurry concentration, speed of rotation and slurry bath temperature on the abrasive slurry wear behavior of a stainless steel surface produced by Plasma transferred arc (PTA) hardfacing process. Of the four variables considered in this investigation, it is found that the slurry concentration has a predominant effect on wear rate of hardfaced surfaces compared to other variables. Microstructural analyses of the worn surfaces were carried out using SEM. Both experimental and mathematical investigations show that the wear resistance of the PTA hardfaced stainless steel surface is four times better than that of the carbon steel substrate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    26
    Citations
    NaN
    KQI
    []