Electrical Resistivity and Mechanical Properties of Tungsten Carbide Reinforced Copper Alloy Composites

2012 
In the present study, the electrical, mechanical and physical properties of Cu-WC composites are presented. The composites of copper alloy containing 0-8 weight % WC were prepared using liquid metallurgy route by stirring molten alloy to obtain vortex using a steel stirrer coated with alumina and rotated at 500 rpm. The experimental results showed that the density of the composites increase with increased WC content and agrees with the values obtained through the rule of mixtures. The hardness and ultimate tensile strength of Cu-WC composites were found to increase with increased WC content in the matrix at the cost of ductility. Model analysis of composites was carried out for ultimate tensile strength and hardness and it was found that the approximate mechanics of materials prediction Paul model is consistent with experimental results. The theoretical results of electrical resistivity of composites calculated using P.G Klemens model were consistent with the experimental values.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    18
    Citations
    NaN
    KQI
    []