Optimization of the Biocatalysis for D-DIBOA Synthesis Using a Quick and Sensitive New Spectrophotometric Quantification Method.

2020 
D-DIBOA (4-hydroxy-(2H)-1,4-benzoxazin-3-(4H)-one) is an allelopathic-derived compound with interesting herbicidal, fungicidal, and insecticide properties whose production has been successfully achieved by biocatalysis using a genetically engineered Escherichia coli strain. However, improvement and scaling-up of this process are hampered by the current methodology for D-DIBOA quantification, which is based on high-performance liquid chromatographic (HPLC), a time-consuming technique that requires expensive equipment and the use of environmentally unsafe solvents. In this work, we established and validated a rapid, simple, and sensitive spectrophotometric method for the quantification of the D-DIBOA produced by whole-cell biocatalysis, with limits of detection and quantification of 0.0165 and 0.0501 µmol·mL−1 respectively. This analysis takes place in only a few seconds and can be carried out using 100 µL of the sample in a microtiter plate reader. We performed several whole-cell biocatalysis strategies to optimize the process by monitoring D-DIBOA production every hour to keep control of both precursor and D-DIBOA concentrations in the bioreactor. These experiments allowed increasing the D-DIBOA production from the previously reported 5.01 mM up to 7.17 mM (43% increase). This methodology will facilitate processes such as the optimization of the biocatalyst, the scaling up, and the downstream purification.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []