Computationally Guided Catalyst Design in the Type I Dynamic Kinetic Asymmetric Pauson–Khand Reaction of Allenyl Acetates

2017 
The Rh(I)-catalyzed allenic Pauson–Khand reaction (APKR) is an efficient, redox-neutral method of synthesizing α-acyloxy cyclopentenones. An enantioselective APKR could provide access to chiral, nonracemic α-acyloxy and α-hydroxy cyclopentenones and their corresponding redox derivatives, such as thapsigargin, a cytotoxic natural product with potent antitumor activity. Rapid scrambling of axial chirality of allenyl acetates in the presence of Rh(I) catalysts enables the conversion of racemic allene to enantiopure cyclopentenone product in a dynamic kinetic asymmetric transformation (DyKAT). A combined experimental and computational approach was taken to develop an effective catalytic system to achieve the asymmetric transformation. The optimization of the denticity, and steric and electronic properties of the ancillary ligand (initially (S)-MonoPhos, 58:42 er), afforded a hemilabile bidentate (S)-MonoPhos-alkene-Rh(I) catalyst that provided α-acyloxy cyclopentenone product in up to 14:86 er. Enantioselecti...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    33
    Citations
    NaN
    KQI
    []