Multiobjective heuristic approaches to seismic design of steel frames with standard sections
2007
Seismic design problem of a steel moment-resisting frame is formulated as a multiobjective programming problem. The total structural (material) volume and the plastic dissipated energy at the collapse state against severe seismic motions are considered as performance measures. Geometrically nonlinear inelastic time-history analysis is carried out against recorded ground motions that are incrementally scaled to reach the predefined collapse state. The frame members are chosen from the lists of the available standard sections. Simulated annealing (SA) and tabu search (TS), which are categorized as single-point-search heuristics, are applied to the multiobjective optimization problem. It is shown in the numerical examples that the frames that collapse with uniform interstorey drift ratios against various levels of ground motions can be obtained as a set of Pareto optimal solutions. Copyright © 2007 John Wiley & Sons, Ltd.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
24
References
25
Citations
NaN
KQI