Structure—function analysis of the α5 and the α13 helices of human glucokinase: Description of two novel activating mutations

2005 
It was recently described that the α5 and the α13 helices of human pancreatic glucokinase play a major role in the allosteric regulation of the enzyme. In order to understand the structural importance of these helices, we have performed site-directed mutagenesis to generate glucokinase derivatives with altered residues. We have analyzed the kinetic parameters of these mutated forms and compared them with wild-type and previously defined activating mutations in these helices (A456V and Y214C). We found two new activating mutations, A460R and Y215A, which increase the affinity of the enzyme for glucose. Our results suggest that substitutions in the α5 or the α13 helices that favor the closed, active conformation of the enzyme, either by improving the interaction with surrounding residues or by improving the flexibility of the region defined by these two helices, enhance the affinity of the enzyme for glucose, and therefore its performance as a glucose phosphorylating enzyme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    21
    Citations
    NaN
    KQI
    []